
March 2004 NAS Technical Report NAS-04-001

CAD-Based Aerodynamic Design of Complex Configurations
Using a Cartesian Method

M. Nemec
NRC Research Associate

M. J. Aftosmis
Senior Research Scientist

T. H. Pulliam
Senior Research Scientist

NASA Ames Research Center

MS T27B, Moffett Field, CA 94035

1 Abstract

A modular framework for aerodynamic optimization of com-
plex geometries is developed. By working directly with
a parametric CAD system, complex-geometry models are
modified and tessellated in an automatic fashion. The use
of a component-based Cartesian method significantly re-
duces the demands on the CAD system, and also provides
for robust and efficient flowfield analysis. The optimization
is controlled using either a genetic or quasi–Newton algo-
rithm. Parallel efficiency of the framework is maintained
even when subject to limited CAD resources by dynamically
re-allocating the processors of the flow solver. Overall, the
resulting framework can explore designs incorporating large
shape modifications and changes in topology.

2 Introduction

AERODYNAMIC design is inherently a multidisci-
plinary problem that involves complex surface geome-

try, competing objectives, multiple operating conditions, and
strict design constraints. Consequently, important consider-
ations for an effective optimization framework include: 1)
geometry modeling and surface discretization, 2) objective
function and constraint evaluation, which includes methods
for mesh generation, surface- and volume-mesh perturba-
tion, and flow solution, and 3) the selection of optimization
techniques. In modern engineering design environments,
the surface geometry is generally represented by a paramet-
ric Computer-Aided-Design (CAD) model. Since all down-
stream analysis and design relies on this representation, the
CAD model, accessible in its native environment, should
serve as the basis of automated optimization.

Recently, a promising approach has been developed that
allows direct access to the native CAD representation. This
approach is based on the Computational Analysis and PRo-
gramming Interface (CAPRI) [1, 2, 3, 4, 5]. In addition to
providing an effective tool for surface discretization, CAPRI
allows the modification of adjustable parameters built into
the CAD model. Hence, the design variables and geomet-
ric constraints can be intrinsic to the CAD model. Upon

a regeneration of the model in response to a parameter
change, CAPRI constructs a “water-tight” surface triangu-
lation, which can be automatically refined to obtain a CFD-
ready triangulation.

Robust and efficient volume-mesh generation is the next
critical part of the optimization framework. Traditional,
body-fitted structured and unstructured mesh generation al-
gorithms can be computationally expensive and usually re-
quire user supervision. This has motivated the develop-
ment of mesh-perturbation schemes [6, 7, 8] that are used
during the optimization process to modify a given baseline
mesh. The location of nodes is tracked as the mesh deforms,
which allows the use of fast solution-transfer algorithms and
helps maintain a smooth design landscape. Unfortunately,
the mesh-perturbation schemes may breakdown and require
user intervention for topology and sufficiently large geome-
try changes.

Cartesian methods offer a promising alternative. The
mesh generation is fast, robust, and essentially fully auto-
matic [9, 10]. Due to the decoupling of the surface dis-
cretization from the volume mesh, Cartesian mesh genera-
tion is virtually insensitive to the complexity of the input
geometry. When combined with robust high-fidelity flow
solvers, the Cartesian approach provides a unique capabil-
ity, especially for problems with moving bodies in relative
motion [11] and automated optimization [8, 12, 13]. By al-
lowing general topology and radical geometry changes, the
optimization algorithm is able to explore new regions of the
design landscape that may lead to superior and unconven-
tional designs.

For the problems under consideration here, the most
promising optimization algorithms range from autonomous
approaches such as evolutionary [14, 15, 16] and finite-
difference gradient-based algorithms [17], to methods re-
quiring greater coupling such as the adjoint approach [18,
19, 20] for gradient computations. Furthermore, the use
of these techniques in conjunction with pattern-search tech-
niques [21] and approximation methods [22, 23], can help
deal with complex design landscapes and reduce the compu-
tational cost of the optimization.

The selection of a particular optimizer is problem depen-
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dent and involves the classic trade-off between specialization
and generality. It is therefore desirable to construct a flexi-
ble optimization framework to serve as a test-bed for various
strategies and algorithms. Important factors in the integra-
tion of an optimization algorithm into such frameworks in-
clude: 1) scalability of the optimization technique in a paral-
lel computing environment, 2) degree of coupling among the
optimization modules and the high-fidelity solvers within the
framework, 3) flexibility in the formulation of objectives and
constraints, and 4) effectiveness in multi-modal and noisy
design landscapes.

In targeting the design of complex three-dimensional ge-
ometry, the presence of noise, or non-smoothness, is un-
avoidable in the design landscape. The noise stems from
three primary sources. First, physical sources such as lo-
cal flow unsteadiness due to complex geometry may hinder
deep convergence of the flow solution. Second, noise due
to geometry-representation and discretization, which may be
caused by the details of the model construction, the internal
characteristics of the CAD system, or the surface tessellation
algorithm. Third, noise due to discretization error of the vol-
ume mesh. For embedded-boundary Cartesian methods, the
intersection of the surface geometry with the volume mesh
changes non-smoothly as the geometry evolves during the
optimization. Consequently, it is important to evaluate the
influence of noise on the optimization algorithm, since the
presence of false extrema in the design landscape may slow
down and even stall the optimization process.

The objective for this paper is to present the develop-
ment of an optimization capability forCart3D, a Cartesian
inviscid-flow analysis package of Aftosmiset al. [10, 24].
We present the construction of a new optimization frame-
work and we focus on the following issues:

• Component-based geometry parameterization approach
using parametric-CAD models and CAPRI. A novel
geometry server is introduced that addresses the issue
of parallel efficiency while only sparingly consuming
CAD resources.

• The use of genetic and gradient-based algorithms for
three-dimensional aerodynamic design problems. The
influence of noise on the optimization methods is stud-
ied.

Our goal is to create a responsive and automated framework
that efficiently identifies design modifications that result in
substantial performance improvements. In addition, we ex-
amine the architectural issues associated with the deploy-
ment of a CAD-based design approach in a heterogeneous
parallel computing environment that contains both CAD
workstations and dedicated compute engines. The optimiza-
tion framework is first validated by solving a lift-constrained
drag minimization problem. Thereafter, we demonstrate the

effectiveness of the framework for a design problem that fea-
tures topology changes and complex geometry.

3 Optimization Problem Formulation

The aerodynamic optimization problem consists of deter-
mining values of design variablesX, such that the objective
functionJ is minimized

min
X

J (X,Q) (1)

subject to constraint equationsCj :

Cj(X, Q) ≤ 0 j = 1, . . . , Nc (2)

where the vectorQ denotes the conservative flowfield vari-
ables andNc denotes the number of constraint equations.
The flowfield variables are forced to satisfy the governing
flowfield equations,F , within a feasible region of the design
spaceΩ:

F(X, Q) = 0 ∀ X ∈ Ω (3)

which implicitly definesQ = f(X). The governing flow
equations are the three-dimensional Euler equations of a per-
fect gas, where the vectorQ = [ρ, ρu, ρv, ρw, ρE]T .

The objective function defines the goals of the optimiza-
tion problem, while the constraint equations limit the feasi-
ble region of the design space. The constraints may involve
performance functionals, such as lift, geometric quantities,
such as volumes and thicknesses, and also simple bound
constraints for design variables. A modular framework is
constructed to solve the optimization problem defined by
Eqs. 1–3. An evaluation of the objective function and con-
straints requires the coupling of several software compo-
nents that form the analysis module of the framework. These
components are outlined in Fig. 1 and are described below.
Following the analysis module, we present the optimiza-
tion algorithms and a detailed description of the optimization
framework.

4 CAD-Based Geometry Modeling

In traditional approaches for geometry modeling and regen-
eration, one begins by either importing a given baseline sur-
face discretization to a geometry parameterization tool, or
defining a set of idealized components within a geometry
parameterization tool [25, 6, 26, 27]. Most likely, the base-
line surface discretization has been generated from an exist-
ing CAD geometry. This approach offers fast and accurate
regeneration of surfaces and computation of component in-
tersections. Furthermore, the source code is usually avail-
able, and hence the computation of design sensitivities (if
required) is possible by the use of automatic differentiation
or analytically.
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Figure 1: Components of the analysis module

However, the geometry parameterization tool is usually
tailored to a specific set of allowable topologies, and pro-
vides a limited variety of design variables. For example, only
wing-body configurations with prescribed design variables
for planform and shape changes may be allowed. Such built-
in restrictions limit the feasible region of the design space,
and consequently, the best design may never be realized. Al-
though it is always possible to improve the parameterization
tool with additional code development, this burden becomes
prohibitive when faced with complex, integrated configura-
tions and multidisciplinary problems. Ultimately, this effort
leads to the development of a specialized in-house tool mim-
icking aspects of a parametric CAD system.

An alternative approach is to consider the use of a
commercial-CAD system [28]. Most present-day CAD soft-
ware is based on parametric design and feature modeling. A
part is constructed by defining features with adjustable pa-
rameters. The features define a sequence of operations, for
example an extrusion of a sketched cross section, and are or-
ganized in the form of a feature tree. This forms the master-
model of the part, and different instances of the part can be
generated for various parameter values by following the tem-
plate of the master-model. Individual parts can be grouped in
hierarchical dynamic assemblies, which allow relative mo-
tion between constituent parts. Furthermore, features not re-
quired for the analysis (or design) problem at hand can be
suppressed. The potential advantages of this approach in-

clude:

• Generality: there are virtually no pre-defined limita-
tions on the complexity of parts and assemblies.

• Consistency: the part is always queried in its native en-
vironment, without geometry translation.

• Variable fidelity: through the use of feature suppres-
sion, various levels of part abstraction are possible.

• Natural constraints: the feature-based modeling cap-
tures the design intent of the part or assembly and there-
fore can be used to impose natural constraints on the
geometry.

Although this approach is conceptually very appealing,
the integration of a commercial CAD system into an op-
timization framework requires careful consideration of the
following issues:

1. Parts and assemblies must be created with design mod-
ifications in mind. Although this sounds obvious, the
selection of parameters for a design study can be a chal-
lenging task and the construction of flexible and robust
CAD models requires significant CAD-system experi-
ence. The geometry parameterization issue is placed
well upstream in the design/ analysis process.

2. The use of “legacy” geometry, or geometry with no
parametric CAD representation, requires special con-
sideration. Unfortunately, most CFD geometry today
belongs to this category.

3. The interface for accessing the parameters of the CAD
model depends on the specific CAD system.

4. The efficiency of the geometry updates and the surface
discretization depend on the attributes of the proprietary
CAD-geometry kernel.

5. Practical issues such as the number of available CAD
licenses need to be considered in the design of parallel
optimization procedures.

6. The issue of differentiability and the use of mesh-
perturbation algorithms for non-smooth changes in the
surface discretization.

Items 1 and 2 are organizational issues that are beyond the
scope of this work. It is clear, however, that current produc-
tion and development environments make extensive use of
feature-based solid modeling for engineering analysis and
design. While the mesh requirements of CFD simulations
place unusual demands on the CAD system, it is highly ad-
vantageous to leverage its sophisticated modeling capabili-
ties. We use CAPRI [3, 5, 4] to address items 3 and 4, which
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we discuss in the following section. The architecture of the
optimization framework, presented thereafter, mitigates the
concerns of item 5. Item 6 remains an open issue. Finite-
difference schemes can provide good approximations of sen-
sitivity information, but their dependence on stepsize lim-
its the accuracy, and in some cases the robustness, of this
approach [26]. Mesh-perturbation schemes introduce addi-
tional difficulties due to the requirement of tracking surface
deformations [4].

5 Role of CAPRI

5.1 CAD-Model Regeneration

CAPRI exposes the master-model feature tree of the CAD
model and allows direct modification of parameters within
that tree. A detailed overview of CAPRI’s extensive capa-
bilities is given in [5]. An alternative to CAPRI is the direct
use of “Developer Toolkits” that are available for most CAD
systems. CAPRI, however, provides a unified interface for
most CAD systems.

Most design variables are associated directly with values
exposed in the feature tree. An exception is surface shape
modification, which requires the access to feature informa-
tion at a high level of detail. For example, the control-point
locations for individual curves are required. CAPRI is able
to expose non-dimensional curve data points of sketched fea-
tures, which can be modified to generate new surfaces. For
example, these may be the data points of airfoil sections that
are lofted to define a wing, or fuselage cross-sections. Note
that the use of each data point as a design variable would
lead to very large optimization problems and potentially
non-smooth curves. To circumvent this difficulty, we use
B-spline curves to define each cross-section. The shape de-
sign variables are associated with the B-spline control points
and are external to the CAD system. This additional level of
indirection can easily accommodate other approaches, such
as the Hicks-Henne shape functions [4].

Fig. 2 shows an example of two very different instances
of the same parametric-CAD model for a generic wing part.
The generic model consists of the typical planform parame-
ters that include surface area, aspect ratio, taper ratio, sweep,
and root-section and tip-section twist. A shape parameteri-
zation example is shown at the top of Fig. 2, where a cubic
B-spline with 15 control points is used to closely approxi-
mate the RAE-2822 airfoil. The root and tip airfoil sections
are linearly lofted to generate the wings shown.

5.2 Automatic Surface Tessellation

After modifying and regenerating the CAD-model, CAPRI
provides a surface triangulation for each component. The tri-
angulation is refined based on three measures of quality [3]:

Airfoil Section
Control Points

Figure 2: Example of two instances of a generic-wing CAD
model. A B-spline airfoil parameterization is shown at the
top of the figure.

1) triangle edge length, 2) the deviation of an edge from
the underlying CAD model, and 3) a dihedral angle bound
between adjacent triangles. The triangulation algorithm is
highly robust, but in certain instances the resulting triangu-
lations for a component subject to small shape perturbations
may be significantly different. This may introduce noise into
the optimization problem, which we discuss further in the
Results section.

Recently, a new triangulation algorithm has been added
to CAPRI that provides a more uniform, right-triangle based
tessellation. An example of coarse triangulations is shown in
Fig. 3 for a dramatic change in surface shape. The algorithm
identifies component faces that qualify for such triangula-
tions, and otherwise reverts back to the quality triangulation.
The new triangulation algorithm is less sensitive to small ge-
ometry perturbations.

6 Mesh Generation and Flow Solution

The extraction of a wetted surface from a set of intersect-
ing components is the next task of the analysis module (see
Fig. 1). Since CAD-solid representations typically rely on
the use of parametric B-splines (or NURBS), the compu-
tation of component intersections can be costly within the
CAD system. In the present approach, the components are
intersected after the surface discretization. This operation
is performed efficiently as a part of the component-based
approach ofCart3D [10]. It should be noted that CAPRI
caches an associated triangulation with each component.
This caching avoids unnecessary re-triangulations for com-
ponents that are not modified or experience only rigid body
motion during the design process.

Cartesian volume meshes are generated by repeated cell
division of an initial coarse mesh [10]. A parallel multi-
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Figure 3: Examples of right-triangle based tessellations for large shape deformations

level method is used to solve the steady-state Euler equa-
tions. The spatial discretization is second order accurate us-
ing van Leer’s flux vector splitting in conjunction with either
Minmod or Venkatakrishnan’s flux limiters, see Aftosmiset
al. [24] for details.

7 Optimization Algorithms

We cast the optimization problem as an unconstrained prob-
lem by lifting the side constraints, Eq. 2, into the objec-
tive function using a penalty method. The constraint im-
posed by the flowfield equations, Eq. 3, is satisfied at ev-
ery point within the feasible design space, and consequently
these equations do not explicitly appear in the formulation
of the optimization problem. We investigate the genetic al-
gorithm of Holst and Pulliam [16], and an unconstrained
BFGS quasi-Newton algorithm coupled with a backtrack-
ing line search [17, 29, 20]. The objective function gradient
is evaluated using central-differences. We “warm-start” the
finite-difference gradient computations from the base-state
solution, saving roughly25 to 50% when compared with the
standard full-multigrid startup. The solution-transfer algo-
rithm is described by Aftosmiset al. [30].

8 Optimization Framework

The synthesis of individual modules into an automated and
efficient optimization framework is a challenging software
design problem. A number of sophisticated frameworks ex-

ist, such as the DAKOTA toolkit [31], which provide a flex-
ible and general approach for linking analysis tools with op-
timization techniques in large parallel computing environ-
ments. In order to have a direct control over the layout of
the framework, and therefore quickly evaluate different par-
allel architectures, we pursue the development of a custom
framework.

The first part of the framework addresses the coupling of
the CAD/CAPRI module with the optimization process. Fig-
ure 4 shows the layout of this distributed client-server in-
terface. The optimization along with the analysis module
are executed in a queue system of large compute engines.
At each iteration of the optimization process, CAD geome-
try requests are generated for different parameter values and
these are placed in a central repository (right side of Fig. 4).
Independent of the optimization runs, a geometry server is
initiated that consists of multiple CAD nodes (left side of
Fig. 4). The nodes process the geometry requests by retriev-
ing the required parts or assemblies from a specified storage
location, regenerating the CAD models, and providing sur-
face triangulations for the optimization processes. Since the
geometry requests are independent, we expect the geometry
server to achieve nearly linear scalability.

Initially, it may appear that in order to obtain an efficient
geometry server, the number of CAD nodes should match
the number of geometry requests from all optimization pro-
cesses. In practice, the number of CAD nodes is limited by
the number of available CAD licenses, as each node con-
sumes one license. An immediate concern is that the CAD
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Figure 4: Layout of the interface between optimization pro-
cesses, or geometry clients, on the right side and the dis-
tributed geometry server on the left side.

nodes become the bottleneck of the optimization process,
idling the processors of the compute engines.One of the
driving requirements in the design of the present geometry
interface is to maintain the efficiency of the optimization
process when only a handful of licenses are available, yet
remain scalable should the number of licenses increase.

This is a classic problem of latency. To avoid the geome-
try processing bottleneck, we mask the latency of the CAD
nodes by dynamically allocating the available processors of
the optimization process to the number of completed sur-
face triangulations. Figure 5 illustrates this on an example
with 64 processors. At the start of each design iteration,
all processors are dedicated to the solution of the first re-
turned surface triangulation from the CAD nodes. This is the
base state of the gradient method and the first chromosome
of the genetic algorithm, denoted as “Geometry 1” in Fig. 5.
Note that there is a brief idling of all processors, which could
be avoided by implementing an asynchronous optimization
approach. Upon completion of the first geometry analysis,
we check the number of completed surface triangulations.
These are processed by the CAD nodes while the analysis
of the first geometry is performed on the compute engine,
denoted as “Geometries2 . . .K” in Fig. 5. The number of
processors is distributed among the completed surface tri-
angulations and multiple analysis modules are executed on
subsets of the available processors. This cycle repeats until
all geometry requests are analyzed. For example, the opti-
mization process may have 64 processors available and if 4
surface triangulations are completed by the CAD nodes, we
can execute 4 analysis modules in parallel with 16 proces-
sors per module, see Fig. 5.

It is important to note that the geometry intersection and
volume mesh generation algorithms of the analysis mod-

ule (see Fig. 1) are serial algorithms, while the flow solver
is an efficient parallel solver [24]. The dynamic, coarse-
grained parallelism used during each design iteration pro-
vides not only concurrent execution of serial tasks, but also
ensures high parallel efficiency of the flow solver by limiting
the number of processors available to each analysis module.
Studies by Eldredet al. [32] demonstrate that such mul-
tilevel parallelism significantly improves the scalability of
optimization frameworks.

The worst case scenario occurs when the wall-clock time
required for the processing of a geometry request exceeds
the time for completion of the flow solution when all proces-
sors are used. If only one CAD node is available, then this
CAD node would not be able to feed the compute engine
with geometries without processor idle time. This situation
is unlikely, since CAD model regeneration and tessellation
tasks have computational complexity ofO(N2), while vol-
ume mesh generation and flow solution tasks areO(N3).

The CAD nodes are typically distributed among available
engineering workstations. They could also be executed on
a single parallel machine or the compute engine itself. The
individual nodes are fully independent. Hence, the system
is tolerant of node crashes and it is easy to add or delete
nodes. The nodes are “greedy”, that is, they compete for ge-
ometry requests by checking the CAD repository. In order
to avoid race conditions between nodes for the same geom-
etry request, a node must first acquire a lock on the CAD
repository. Once a lock is obtained, the node searches for
the oldest geometry request and releases the lock. This pro-
cess is further complicated by the fact that all communica-
tions between the node, the CAD-request repository, the part
storage location, and the compute engines are performed us-
ing secure-shell commands (see Fig. 4). Once a geometry
request is processed, the node notifies the optimization pro-
cess that the surface triangulation is ready. The surface trian-
gulation is pulled from the node by the optimization process
when the analysis of that particular configuration is required.
This facilitates the downloading of the surface triangulations
in parallel.

9 Results and Discussion

Two design examples are presented to investigate the ef-
fectiveness of the new optimization framework. We com-
pare the genetic and BFGS quasi-Newton algorithms in both
examples. All geometry models are constructed using the
Pro/ENGINEER CAD system. In the first example, we ad-
dress noise in the optimization process. By the use of a sim-
ple “2-D” geometry, the contribution of noise due to changes
in the cut-cells of the volume mesh is isolated. A more com-
plex geometry is used for the second example. This example
focuses on the efficiency of the CAD/CAPRI module and the
interface with the optimization procedure.
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Figure 5: Dynamic allocation of processors to mask the latency of CAD geometry processing (based on 64 CPUs as an
example)

9.1 2-D Design Example

The first design example is based on a two-dimensional tran-
sonic flow over the NACA 0012 airfoil. The freestream
Mach number is 0.7 and the initial angle of attack is 3
deg. The airfoil section is actually modeled as a three-
dimensional wing of unit-span, with no twist and no taper,
as shown at the bottom of Fig. 2. All shape perturbations are
performed by the CAD/CAPRI geometry module.

The following experiment is performed to estimate the
level of discretization noise in a typical design landscape.
We hold the airfoil geometry and flow conditions fixed, and
we monitor the variation in the lift and drag coefficients due
to rigid body motion of the airfoil. Similar experiments
have been reported by Andersonet al. [33] for unstructured
meshes and Dadoneet al. [13] for Cartesian meshes. Ide-
ally, the aerodynamic coefficients should remain constant.
However, the changes in the cut-cells, and the correspond-
ing changes in the truncation error of the spatial discretiza-
tion, introduce a variation, or noise, in the aerodynamic co-
efficients that should be minimized to ensure smooth design
landscapes.

The extent of rigid body motion is based on the coarsest
cell on the body of the airfoil, which is roughly0.7%c for
a mesh with20, 576 cells on the symmetry plane after14
levels of cell refinement. The cell is traversed in20% in-
crements in both the horizontal and vertical directions. Note
that for this relatively simple transonic flow, the flow solver

converges at least six orders of magnitude. Hence, the vari-
ation in the lift and drag coefficients is primarily influenced
by the local mesh truncation error. The following summary
provides guidelines that minimize the sensitivity of the aero-
dynamic coefficients to the mesh:

• Sub-cell information [9] regarding the variation of the
surface within the cut cell should be used.

• Additional local refinement of sharp features, such as
trailing edges, should be performed. The mesh gener-
ator has been modified to perform this task automati-
cally.

The resulting peak-to-peak variation in lift is limited to
0.5%, while the variation in drag is1.7% or roughly 2 counts
as the airfoil traverses the mesh. The noise is the trunca-
tion error of the Cartesian cells projected into the function-
als of interest. This is an indication of how close an opti-
mization algorithm can approach the optimal solution. In
poorly-scaled, or flat, regions of the design space, a gradient
method may stall due to the presence of such noise. How-
ever, once the level of noise is established, we use this infor-
mation to select a sufficiently large finite-difference gradient
stepsize [34] to maximize the performance of the gradient
method for the given level of mesh refinement.

For design problems that involve only local shape
changes, the variation of the functionals is smaller. Fur-
ther noise reductions are obtained by the use of the right-

7 OF 13



March 2004 NAS Technical Report NAS-04-001

triangle tessellation algorithm (see Fig. 3). The quality-
based triangulation is more sensitive to small shape pertur-
bations, which results in local, non-smooth changes in the
surface discretization and may trigger changes in the refine-
ment boundaries of the volume mesh. Overall, the issue of
noise remains a subject of ongoing research, with present
focus on limiter formulations in the cut-cells.

We demonstrate the performance of the framework on a
lift-constrained drag minimization problem. The objective
function is given by

J =





ωL

(
1− CL

C∗L

)2

+ ωD

(
1− CD

C∗D

)2

if CD > C∗D

ωL

(
1− CL

C∗L

)2

otherwise

(4)
whereC∗D andC∗L represent the target drag and lift coeffi-
cients, respectively. The target lift coefficient is set to0.545,
which is the lift coefficient for the initial shape and flow con-
ditions, and the target drag coefficient is set to0.002, which
represents a five-fold reduction in drag from the initial con-
ditions. The weightsωL andωD are user specified constants
set to1.0 and0.005, respectively. The angle of attack and
the vertical position of two B-spline control points on the
upper surface of the airfoil are used as design variables (see
Fig. 2).

Figure 6 shows the convergence of the objective function
for both the BFGS quasi-Newton (denoted as gradient) and
genetic (denoted as GA) algorithms. The label “Design It-
erations” in Fig. 6 refers to the number of generations eval-
uated by the genetic algorithm, and the number of objective
function and gradient evaluations performed by the quasi-
Newton algorithm. We use16 chromosomes, i.e. objective
function evaluations, to define a generation of the genetic
algorithm. The quasi-Newton algorithm requires seven ob-
jective function evaluations at each design iteration. The two
optimization algorithms converge to the same solution. The
L2-norm of the gradient vector is reduced by2.5 orders of
magnitude. Assuming that the objective function is con-
verged within 15 design iterations for both optimizers, the
quasi-Newton algorithm required 105 function evaluations,
while the genetic algorithm required 240 function evalua-
tions.

Figure 7 shows the convergence of the lift and drag coef-
ficients for the quasi-Newton algorithm. Note that the drag
coefficient is reduced by at least a factor of two when com-
pared with the initial design. Figure 8 shows the initial and
final pressure distributions and airfoil shapes.

9.2 3-D Design Example

The second design example is based on the configuration
shown in Fig. 9. This generic model is a CAD assembly of
five parts consisting of a fuselage with a bluff base, a wing,
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Figure 6: Objective function convergence history for the lift-
constrained drag minimization problem (3 design variables)
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Figure 7: Convergence of the lift and drag coefficients for
the quasi-Newton algorithm (3 design variables)

a canard, a canted tail, and an engine cluster. The wing and
canard are constructed from the same CAD model, which
was also used in the first design example and is shown in
Fig. 2. At the assembly level, the wing and canard parts are
“attached” to the fuselage via two parameters, their horizon-
tal and vertical locations, respectively. These parameters are
constrained to intersect the projection of the fuselage on the
symmetry plane within the CAD system. This simple con-
struct avoids non-physical configurations, for example wings
that detach from the fuselage during the optimization, even
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Figure 8: Pressure distribution and airfoil shapes for the lift-
constrained drag minimization problem (3 design variables)

Figure 9: Model configuration for the second design exam-
ple (before component intersection)

if the fuselage shape and dimensions change.
Before presenting optimization results, we characterize

the performance of the optimization framework. We focus
on the analysis module, see Fig 1, as this is the most expen-
sive part of the framework. Table 1 presents average CPU
timing results for the CAD model regeneration and surface
triangulation using CAPRI. The timings for the fuselage and
wing parts are representative of any other component in the
assembly. The CAD-model regeneration times are slightly
faster for changes that do not require shape modifications,
i.e. no profile section changes. It is clear from Table 1 that
CAD-model regeneration times are not a significant expense
even for problems with many design variables.

The CPU time for surface triangulation is greatly influ-
enced by the choice of the triangulation algorithm. For the
fuselage, CAPRI uses the quality-based triangulation algo-
rithm. This is in contrast to the wing surfaces, where the
right-triangle tessellation algorithm is used. To further elu-
cidate the performance reported in Table 1, the quality-based
triangulation algorithm generates roughly500 triangles per

Table 2: Wallclock times for individual components
of theCart3D module (600 MHz R14000 SGI Ori-
gin 3000)

Component Time (s) Algorithm
Mesh Generationa 132.0 Serial

Flow Solutionb 455.0 Parallel
Mesh Solution Transfer 26.0 Serial
a Includes component intersection (definition of wet-

ted surface), mesh generation, flow-solver domain de-
composition, and multigrid coarse-mesh generation

b Using 64 processors

CPU sec., while the right-triangle tessellation algorithm gen-
erates roughly3, 300 triangles per CPU sec. While the time
required for surface triangulation is not prohibitive, it is im-
portant to avoid all unnecessary re-triangulations during the
optimization. This is accomplished by caching an associated
baseline triangulation for each part prior to the optimization
and tracking parameter changes. For example, we tag design
variables that control relative motion between components,
since a change in these parameters does not require surface
re-triangulation.

Table 2 presents average timing results for individual
components within theCart3D analysis module. The vol-
ume mesh contains roughly1.5 million cells for a half-span
model of the configuration and64 processors are used to ob-
tain the flow solution. The time for the mesh-solution trans-
fer algorithm used to “warm-start” finite-difference gradient
computations is also shown.

Valuable information regarding the CPU efficiency during
a design iteration is obtained by comparing Tables 1 and 2.
For example, suppose that we have only one CAD license
available and that the design problem of interest involves de-
sign variables associated with both the fuselage and wing.
Then, the timings in Tables 1 and 2 indicate that the time
required to complete a CAD-model regeneration and surface
triangulation is a factor of six smaller than the time required
for a flow solution. This means that by the time the analysis
module completes the flow solution of the first chromosome
of the GA or the base-state of the gradient method, six new
surface triangulations are ready for analysis. By subdividing
the available CPUs of the optimization process, we execute
multiple analysis modules in parallel to enhance the parallel
efficiency of the optimization framework.

We consider the optimization problem of attaining a
nearly zero pitching moment coefficient for the configura-
tion shown in Fig. 9 by optimizing the canard control sur-
face. The lift coefficient is constrained by the initial lift of
the configuration. The design variables are the control sur-
face aspect ratio, twist, and position along the center line of
the fuselage. The problem has two local optima, the tail or
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Table 1: Average CPU time for CAD-model regeneration and tessellation (600
MHz R14000 SGI Octane Workstation, Pro/ENGINEER kernel)

Part CAD-Model Tessellation Number of Tessellation
Regeneration (s) (s) Triangles Algorithm

Fuselage 2.0a 93.3 ≈ 41, 000 Quality-based
Wing 3.0b 16.5 ≈ 50, 000 Right-triangle

a No shape-section change, only global parameter modifications
b Shape-section change and planform parameter modifications

Figure 10: Example configuration where the control surface
is not part of the wetted surface

canard configuration, with the canard configuration as the
global optimum due to an aft location of the center of grav-
ity. For optimization using the genetic algorithm, the canard
area is also a design variable. This introduces the possibility
of a topology change in the design space, since the resulting
wetted surface may not include a control surface, as shown
in Fig. 10. We use 16 chromosomes for each generation of
the genetic algorithm. For the gradient-based quasi-Newton
algorithm, the control surface area is kept constant and we
start from a canard configuration, i.e. the control surface is
positioned in front of the center of gravity. The freestream
Mach number is0.85 and the angle of attack is1.0 deg.

The objective function is similar to Eq. 4, with a target
lift coefficient of0.222 and a target pitching moment coeffi-
cient of0.001. The initial pitching moment is−0.0714. Fig-
ure 11 shows the convergence history of the objective func-
tion. Note that the label “Design Iteration” refers to the num-
ber of generations evaluated by the genetic algorithm, and
the number of objective function and gradient evaluations
by the quasi-Newton algorithm. Both optimization methods
trim the configuration at the given flight conditions. The gra-
dient has been reduced by almost three orders of magnitude.
The genetic algorithm converges within six design iterations,
requiring only 96 function evaluations. The quasi-Newton
algorithm requires 56 function evaluations.

Figures 12(a) and 12(b) show the initial and final designs
for the quasi-Newton algorithm. The control surface con-
verged to the minimum allowable forward location on the
fuselage (8% of fuselage length), a twist angle of2.98 deg.,
and an aspect ratio of6.03. Note that the control surface area

Design Iteration
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Figure 11: Objective function convergence

is fixed at60.0 during the optimization. Figure 12(c) shows
the final design using the genetic algorithm. For this case,
the optimization converged to the upper bound of the control
surface area, which is60.0, a forward location of8.2% of
fuselage length, a twist angle of3.41 deg., and an aspect ra-
tio of 4.36. The difference in the two designs indicates that
the optimization problem does not have a unique solution.
There may be many control surfaces that trim this configu-
ration and further constraints are required to define a unique
problem.

10 Conclusions and Future Work

An automated optimization framework has been developed
for inviscid-flow aerodynamic design problems. Key as-
pects of the framework include the use of a robust and effi-
cient Cartesian method, a direct interface to a feature-based
CAD system, and the use of two optimization algorithms,
namely a quasi-Newton and genetic algorithms. The CAD-
system interface provided by CAPRI, which controls geom-
etry regeneration and surface tessellation tasks, performed
well for the selected design examples. Two major advan-
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(a) Initial configuration for quasi-Newton algorithm

(b) Final configuration, quasi-Newton algorithm

(c) Final configuration, genetic algorithm

Figure 12: Surface Mach number (M∞ = 0.85, α = 1◦). Mach numbers above 1.3 are red and Mach numbers below 0.5 are
blue.
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tages of the Cartesian method have been demonstrated: 1)
the decoupling of the surface mesh form the volume mesh
allows the direct use of surface tessellations generated by
CAPRI, regardless of topology or large shape changes, and
2) the component-based approach ofCart3D alleviates the
demands on the CAD system and significantly reduces sur-
face tessellation tasks by reusing cached component triangu-
lations.

We have shown that the level of noise in the design land-
scape can be reduced to levels acceptable for gradient-based
algorithms. As a result, both optimizers performed well for
the selected design problems. Although the gradient-based
algorithm requires less function evaluations for the exam-
ples presented, we found the genetic algorithm more tolerant
of design landscape noise, which permits the use of coarser
meshes. We plan to investigate this further in our future
work. In addition, we intend to apply the present framework
to more difficult optimization problems and real-life geome-
tries. Such problems motivate the use of hybrid strategies
and more sophisticated optimization methods.
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